Pricing path-dependent options using optimized functional quantization

G. PagÈs**, J. Printems***
** Univ. PARIS 6 (LPMA, UMR 7599), \& Projet MathFi
*** Univ. PARIS 12 (CMP12, UMR 8050) \& Projet MathFi

Numerical Methods in Finance (AMAMEF), INRIA-Rocquencourt,
February 2006

What is (quadratic) Functional Quantization?

$\triangleright X: \Omega \longrightarrow H,(H,(. \mid)$.$) separable Hilbert space$

$$
\mathbb{E}|X|^{2}<+\infty
$$

\triangleright When $H=\mathbb{R}, \mathbb{R}^{d} \equiv$ Vector Quantization of a random vector X.
\triangleright When $H=L^{2}([0, T], d t)=: L_{T}^{2} \equiv$ Functional Quantization of a process $X=\left(X_{t}\right)_{t \in[0, T]}$.

Discretization of the path space $H=L^{2}([0, T], d t)$
using
$\triangleright N$-quantizer (or N-codebook or N-quantization grid) :

$$
\alpha:=\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} \subset L_{T}^{2}
$$

\triangleright Discretization by α-quantization

$$
\begin{gathered}
X \rightsquigarrow \widehat{X}^{\alpha}: \Omega \rightarrow \alpha:=\left\{\alpha_{1}, \ldots, \alpha_{N}\right\} . \\
\widehat{X}^{\alpha}:=\operatorname{Proj}_{\alpha}(X)
\end{gathered}
$$

where
$\operatorname{Proj}_{\alpha}$ denotes the projection on α following the nearest neigbour rule.

Question : What do we know about $X-\widehat{X}^{\alpha}$ and \widehat{X}^{α} ?

\triangleright Pointwise induced erreur : for every $\omega \in \Omega$

$$
\left|X(\omega)-\widehat{X}^{\alpha}(\omega)\right|_{H}=\operatorname{dist}_{H}\left(X(\omega), \Gamma_{x}\right)=\min _{1 \leq i \leq N}\left|X(\omega)-\alpha_{i}\right|_{H}
$$

\triangleright Mean induced error (or quantization quadratic error) :

$$
\left\|X-\widehat{X}^{\alpha}\right\|_{2}^{2}=\mathbb{E}\left(\min _{1 \leq i \leq N}\left|X-\alpha_{i}\right|_{H}^{2}\right)
$$

\triangleright Distribution of \widehat{X}^{x} : weights associated to each x_{i}

$$
\mathbb{P}\left(\widehat{X}^{\alpha}=\alpha_{i}\right)=\mathbb{P}\left(X \in C_{i}(\alpha)\right), \quad i=1, \ldots, N
$$

where $C_{i}(\alpha)$ denotes the Voronoi cell of x_{i} (w.r.t. α) defined by

$$
C_{i}(\alpha):=\left\{\xi \in H:\left|\xi-\alpha_{i}\right|_{H}=\min _{1 \leq j \leq N}\left|\xi-\alpha_{j}\right|_{H}\right\} .
$$

Optimal (Quadratic) Quantization

The distorsion (square of the quantization error)

$$
\begin{gathered}
D_{N}^{X}: H^{N} \longrightarrow \mathbb{R}_{+} \\
\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \longmapsto\left\|X-\widehat{X}^{\alpha}\right\|_{2}^{2}=\mathbb{E}\left(\min _{1 \leq i \leq N}\left|X-\alpha_{i}\right|_{H}^{2}\right)
\end{gathered}
$$

- Lipschitz continuous for the norm-topolgy
- l.s.c for the weak topology

One shows by induction on N that

$$
D_{N}^{X} \text { reaches a minimum at an (optimal) quantizer of full size } N
$$

If $N=1$, the optimal 1-quantizer is $(\mathbb{E} X)$ and the induced error is $\sigma\left(|X|_{H}\right)$.

Stationary Quantizers

\triangleright The distorsion D_{N}^{X} is differentiable at the full size N-codebooks α and
$\nabla D_{N}^{X}(\alpha)=2\left(\int_{C_{i}(\alpha)}\left(\alpha_{i}-\xi\right) \mathbb{P}_{X}(d \xi)\right)_{1 \leq i \leq N}=2\left(\mathbb{E}\left(\widehat{X}^{\alpha}-X\right) 1_{\left\{\widehat{X}^{\alpha}=x_{i}\right\}}\right)_{1 \leq i \leq N}$
\triangleright Definition : If $\alpha \subset H^{N}$ is a zero of $\nabla D_{N}^{X}(\alpha)$, then α is a stationary quantizer .

$$
\nabla D_{N}^{X}(\alpha)=0 \quad \Longleftrightarrow \quad \widehat{X}^{\alpha}=\mathbb{E}\left(X \mid \widehat{X}^{\alpha}\right)
$$

since

$$
\sigma\left(\widehat{X}^{\alpha}\right)=\sigma\left(\left\{X \in C_{i}(\alpha)\right\}, i=1, \ldots, N\right)
$$

\triangleright An optimal quantizer α is stationary (hence first moment of X and \widehat{X} coincide).

Quantization rate in $H=\mathbb{R}^{d}$

\triangleright Theorem (Zador and al., of 1963 à 2000) Let $X \in L^{2+}(\mathbb{P})$ and $\mathbb{P}_{x}(d \xi)=\varphi(\xi) d \xi$. If $\left(\alpha^{N, *}\right)_{N \geq 1}$ is optimal then

$$
\left\|X-\widehat{X}^{\alpha^{N, *}}\right\|_{2} \sim \widetilde{J}_{2, d} \times\left(\int_{\mathbb{R}^{d}} \varphi^{\frac{d}{d+2}}(u) d u\right)^{\frac{1}{d}+\frac{1}{2}} \times \frac{1}{N^{\frac{1}{d}}} \quad \text { as } \quad N \rightarrow+\infty
$$

The true value of $\widetilde{J}_{2, d}$ is unknown for $d \geq 3$ but

$$
\widetilde{J}_{2, d} \sim \sqrt{\frac{d}{2 \pi e}} \approx \sqrt{\frac{d}{17,08}} \quad \text { as } \quad d \rightarrow+\infty
$$

Conclusion : For every N the same rate as with "naive" product-grids for the $U\left([0,1]^{d}\right)$ disribution with $N=m^{d}$ points + the best constant

The 1-dimension ...

\triangleright Theorem $H=\mathbb{R}$. If $\mathbb{P}_{x}(d \xi)=\varphi(\xi) d \xi$ with $\log f$ concave, then

$$
\forall N \geq 1, \quad \operatorname{argmin} D_{N}^{X}=\left\{x^{(N)}\right\}
$$

Examples : The normal distribution, the gamma distributions, etc.
\triangleright Voronoi cells : $C_{i}(x)=\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\left[, x_{i+\frac{1}{2}}=\frac{x_{i+1}+x_{i}}{2}\right.\right.$.
$\triangleright \nabla D_{N}^{X}(x)=2\left(\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}\left(x_{i}-\xi\right) \varphi(\xi) d \xi\right)_{1 \leq i \leq N}$ and the Hessian

$$
\left.\nabla^{2} D_{N}^{X}(x)=\ldots \text { only uses } \varphi \text { and } \int_{0}^{x} \xi \varphi(\xi) d \xi\right)
$$

\triangleright If $X \sim \mathcal{N}(0 ; 1)$: only erf (x) and $e^{-\frac{x^{2}}{2}}$ are involved.
\triangleright Instant search for the unique zero using a Newton-Raphson descent on $\mathbb{R}^{N} \ldots$ with an arbitrary accuracy.

$$
x(t+1)=x(t)-\left(\nabla^{2} D_{N}^{X}(x(t))\right)^{-1}\left(\nabla D_{N}^{X}(x(t))\right)
$$

\triangleright For $\mathcal{N}(0 ; 1)$ and every $N=1, \ldots, 400$, tabulation within 10^{-14} accuracy of

$$
x^{(N)}=\left(x_{1}^{(N)}, \ldots, x_{N}^{(N)}\right) \quad \text { and } \quad \mathbb{P}\left(X \in C_{i}\left(x^{(N)}\right)\right), i=1, \ldots N
$$

Download at the URL
http ://quantification.finance-mathematique.com/

Functional Quantization (of the Brownian motion)

$\left.\triangleright H=L_{T}^{2}:=L^{2}([0, T]), d t\right), \quad(f \mid g)=\int_{0}^{T} f(t) g(t) d t,|f|_{L_{T}^{2}}=\sqrt{(f \mid f)}$.
\triangleright The Brownian motion W : centered Gaussian process with covariance operator : $C_{B}(f): f \longmapsto\left(t \mapsto \int_{[0, T]^{2}}(s \wedge t) f(s) d s\right)$
\triangleright Diagonalization of $C_{B} \Longrightarrow$ Karhunen-Loève system (\equiv CPA of W)

$$
e_{n}^{W}(t)=\sqrt{2 T} \sin \left(\left(n-\frac{1}{2}\right) \pi \frac{t}{T}\right), \quad \lambda_{n}=\left(\frac{T}{\pi\left(n-\frac{1}{2}\right)}\right)^{2}, n \geq 1
$$

$$
\begin{aligned}
W_{t} & \stackrel{L_{T}^{2}}{=} \sum_{n \geq 1}\left(W \mid e_{n}\right)_{2} e_{n}^{W}(t)=\sum_{n \geq 1} \sqrt{\lambda_{n}} \xi_{n} e_{n}^{W}(t) \\
\xi_{n} & \sim \mathcal{N}(0 ; 1), \quad n \geq 1, \quad \text { iid. }
\end{aligned}
$$

\triangleright Theorem (Luschgy-P., JFA (2000) and AP (2003) $\alpha^{N}=\left(\alpha_{1}^{N}, \cdots, \alpha_{N}^{N}\right)$ sequence of optimal N-quantizers.
$\triangleright \alpha^{N} \subset \operatorname{span}\left\{e_{1}^{W}, \ldots, e_{d(N)}^{W}\right\} \quad$ with $\quad d(N) \sim \log (N)$.
$\triangleright\left\|W-\widehat{W}^{\alpha^{N}}\right\|_{2} \sim \frac{\sqrt{2}}{\pi} \frac{1}{\sqrt{\log (N)}}$ as $N \rightarrow \infty . \quad\left(\frac{\sqrt{2}}{\pi}=0.2026 \ldots\right)$
\triangleright Pythagore dimension reduction
$\left(\mathcal{O}_{N}\right)\left\{\begin{aligned}\left\|W-\widehat{W}^{\alpha^{N}}\right\|_{2}^{2}=\min _{\beta \subset \mathbb{R}^{d(N)},|\beta|=N}\left\|Z-\widehat{Z}^{\beta}\right\|_{2}^{2}+\sum_{k \geq d(N)+1} \lambda_{k} \\ Z \sim \bigotimes_{k=1}^{d(N)} \mathcal{N}\left(0, \lambda_{k}\right) .\end{aligned}\right.$
Then

$$
\widehat{W}^{\alpha^{N}}=\sum_{k=1}^{d(N)}\left(\widehat{Z}^{\beta^{*}(N)}\right)_{k} e_{k}^{W}
$$

Functional Quantization : numerical

 aspects ($T=1$)\triangleright Good news : $\left(\mathcal{O}_{N}\right)$ is a finite dimensional quantization optimization problem.
$\triangleright \operatorname{Bad}$ news : $\lambda_{1}=0.40528 \ldots$ and $\lambda_{2}=0.04503 \ldots \approx \lambda_{1} / 10!!!$
\triangleright A way out:

$$
\left(\mathcal{O}_{N}\right) \Leftrightarrow\left\{\begin{array}{c}
N \text {-optimal quantization of } \bigotimes_{k=1}^{d(N)} \mathcal{N}(0,1) \\
\text { for the norm }\left|\left(z_{1}, \ldots, z_{d(N)}\right)\right|^{2}=\sum_{k=1}^{d(N)} \lambda_{k} z_{k}^{2}
\end{array}\right.
$$

\triangleright A toolbox: (variants of) Competitive Learning Vector Quantization and multi-dim fixed point "Lloyd I procedure" (see G.P.-J.P., MCMA, 2003), etc (in progress) :

$$
\widehat{Z}^{\left(\alpha^{N}\right)(n+1)}=\mathbb{E}\left(Z \mid \widehat{Z}^{\left(\alpha^{N}\right)(n)}\right), \quad\left(\alpha^{N}\right)(0) \subset \mathbb{R}^{d}
$$

\triangleright As a result:

- Optimized stationary codebooks $\beta^{*}(N)$ for the Brownian Motion $N=1$ up to 10000 with $d(N)=1$ up to 9.
- Computation of the companion parameters :
- Weights $=$ distribution of $\widehat{W^{\alpha^{N}}}, N \geq 1$, and
- quantization errors $\left\|W-\widehat{W}^{\alpha^{N}}\right\|_{2}, N \geq 1$.

Fig. 1: Optimized FQ of the Brownian motion $N=10$: the point in \mathbb{R}^{2} vs the paths in the $K-L$ basis

Fig. 2: Optimized FQ of the Brownian motion $N=15$: the point in \mathbb{R}^{2} vs the paths in the $K-L$ basis

Fig. 3: Optimized Quantization of the Brownian motion $N=48$ and

$$
N=96
$$

Rate optimal quantization of diffusions

$\triangleright d X_{t}=b\left(t, X_{t}\right) d t+\vartheta\left(t, X_{t}\right) d W_{t} \quad b, \vartheta$ continuous with linear growth.
$\triangleright \alpha^{N}, N \geq 1$, sequence of rate optimal N-quantizers of W.
$\triangleright d x_{i}^{(N)}(t)=\left(b\left(t, x_{i}^{(N)}(t)\right)-\frac{1}{2} \vartheta \vartheta^{\prime}\left(t, x_{i}^{(N)}(t)\right)\right) d t+\vartheta\left(t, x_{i}^{(N)}(t)\right) d \alpha_{i}^{N}(t)$
\triangleright Theorem Luschgy-P., SPA (2006) The sequence $\left(x^{(N)}\right)_{N \geq 1}$ is rate optimal

$$
\left\|\left|X-\widetilde{X}^{x^{(N)}}\right|_{L_{T}^{2}}\right\|_{2}=O\left(\frac{1}{(\log (N))^{\frac{1}{2}}}\right) \quad\left(\asymp \text { if } \vartheta \geq \varepsilon_{0}>0\right)
$$

where $\widetilde{X}^{x^{(N)}}$ is a non-Voronoi but explicit quantizer defined

$$
\widetilde{X}_{t}^{x^{(N)}}=\sum_{k=1}^{N} x_{i}^{(N)}(t) \mathbf{1}_{\left\{\widehat{W}^{\alpha^{N}}=\alpha_{i}^{N}\right\}}
$$

Numerical Integration (I-II) : quadrature formulae

Let $\left.F: L^{2}[0, T], d t\right) \longrightarrow \mathbb{R}$ be a functional and let $\alpha \in L^{2}([0, T], d t)$ be an N-quantizer.

$$
\mathbb{E} F\left(\widehat{W}^{\alpha}\right)=\sum_{i=1}^{N} F\left(\alpha_{i}\right) \mathbb{P}\left(W \in C_{i}(\alpha)\right)
$$

\triangleright If F is Lipshitz.

$$
\left|\mathbb{E} F(W)-\mathbb{E} F\left(\widehat{W}^{\alpha}\right)\right| \leq[F]_{\text {Lip }} \mathbb{E}\left|W-\widehat{W}^{\alpha}\right| \leq[F]_{\text {Lip }}\left\|W-\widehat{W}^{\alpha}\right\|_{2}
$$

\triangleright If F is \mathcal{C}^{1} and $D F$ is Lipschitz and α a stationary quantizer.
$F(W)=F\left(\widehat{W}^{\alpha}\right)+D F\left(\widehat{W}^{\alpha}\right) \cdot\left(W-\widehat{W}^{\alpha}\right)+\left(D F\left(\widehat{W}^{\alpha}\right)-D F(\zeta)\right) \cdot\left(W-\widehat{W}^{\alpha}\right)$
$\zeta \in\left(W, \widehat{W}^{\alpha}\right)$, hence
$|\mathbb{E} F(W)-\mathbb{E} F\left(\widehat{W}^{\alpha}\right)-\underbrace{\mathbb{E}\left(D F\left(\widehat{W}^{\alpha}\right) \cdot\left(W-\widehat{W}^{\alpha}\right)\right)}_{=0}| \leq[D F]_{\text {Lip }} \mathbb{E}\left|W-\widehat{W}^{\alpha}\right|^{2}$
so that

$$
\left|\mathbb{E} F(W)-\mathbb{E} F\left(\widehat{W}^{\alpha}\right)\right| \leq[D F]_{\text {Lip }}\left\|X-\widehat{W}^{\alpha}\right\|_{2}^{2}
$$

since

$$
\mathbb{E}\left(D F\left(\widehat{W}^{\alpha}\right) \cdot\left(W-\widehat{W}^{\alpha}\right)\right)=\mathbb{E}\left(D F\left(\widehat{W}^{\alpha}\right) \cdot \mathbb{E}\left(W-\widehat{W}^{\alpha} \mid \widehat{W}^{\alpha}\right)\right)=0
$$

Typical functionals

- Fonctionnals $|\cdot|_{L_{T}^{2}}$-continuous at every $\omega \in \mathcal{C}([0, T])$?

$$
F(\omega):=\int_{0}^{T} f(t, \omega(t)) d t
$$

wheref is locally Lipschitz continuous, namely

$$
|f(t, u)-f(t, v)| \leq C_{f}|u-v|(1+g(t, u)+g(t, v))
$$

Example : The Asian payoff in B-S model

$$
F(\omega)=\exp (-r T)\left(\frac{1}{T} \int_{0}^{T} \exp \left(\sigma \omega(t)+\left(r-\sigma^{2} / 2\right) t\right) d t-K\right)_{+}
$$

Numerical Integration (III) : log-Romberg

$\triangleright F: L_{T}^{2} \longrightarrow \mathbb{R}, 3$ times $|\cdot|_{L_{T}^{2}}$-differentiable with bounded differential.
$\triangleright \widehat{W}^{(N)}, N \geq 1$, stationary rate-optimal quantizations
$\triangleright \quad F(W)=F\left(\widehat{W}^{(N)}\right)+D F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)$
$+\frac{1}{2} D^{2} F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)^{\otimes 2}+\frac{1}{6} D^{3} F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)^{\otimes 3}$.
$\mathbb{E} F(W)=\mathbb{E} F\left(\widehat{W}^{(N)}\right)+\frac{1}{2} \mathbb{E}\left(D^{2} F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)^{\otimes 2}\right)+o\left((\log N)^{-\frac{3}{2}+\varepsilon}\right)$.

$$
\text { Conjecture : } \quad \mathbb{E}\left(D^{2} F\left(\widehat{W}^{(N)}\right) \cdot\left(W-\widehat{W}^{(N)}\right)^{\otimes 2}\right) \sim \frac{c}{\log N}, \quad N \rightarrow \infty
$$

Set

$$
M \ll N \quad(e . g . M \approx N / 4)
$$

and $\forall \varepsilon>0$

$$
\mathbb{E}(F(W))=\frac{\log N \times \mathbb{E}\left(F\left(\widehat{W}^{(N)}\right)\right)-\log M \times \mathbb{E}\left(F\left(\widehat{W}^{(M)}\right)\right)}{\log N-\log M}+o\left((\log N)^{-\frac{3}{2}+\varepsilon}\right)
$$

Possible variant (mainly for product quantizations, B.Wilbertz (Trier, 2005)) :

$$
\text { Replace } \quad \log (N) \quad \text { by } \quad 1 /\left\|W-\widehat{W}^{(N)}\right\|_{2}^{2} .
$$

Application : Asian option in a Heston stochastic volatility model

\triangleright The Dynamics : Let ϑ, k, a s.t. $\vartheta^{2} /(4 a k)<1$.

$$
\begin{aligned}
d S_{t} & =S_{t}\left(r d t+\sqrt{v_{t}}\right) d W_{t}^{1}, \quad S_{0}=s_{0}>0, \quad \text { (risky asset) } \\
d v_{t} & =k\left(a-v_{t}\right) d t+\vartheta \sqrt{v_{t}} d W_{t}^{2}, v_{0}>0 \quad \text { with }<W^{1}, W^{2}>_{t}=\rho t, \rho \in[-1,1] .
\end{aligned}
$$

\triangleright The Payoff and the premium :

$$
\mathrm{AsCall}^{\text {Hest }}=e^{-r T} \mathbb{E}\left(\left(\frac{1}{T} \int_{0}^{T} S_{s} d s-K\right)_{+}\right)
$$

(no closed form available)
\triangleright The procedure : • Projection of W^{1} on W^{2}
$S_{t}=s_{0} \exp \left(\left(r-\frac{1}{2} \bar{v}_{t}\right) t+\rho \int_{0}^{t} \sqrt{v_{s}} d W_{s}^{2}\right) \exp \left(\sqrt{1-\rho^{2}} \int_{0}^{t} \sqrt{v_{s}} d \widetilde{W}_{s}^{1}\right)$

- Chaining rule for conditional expectations

$$
\operatorname{AsCall}^{\text {Hest }}\left(s_{0}, K\right)=e^{-r T} \mathbb{E}\left(\mathbb{E}\left(\left.\left(\frac{1}{T} \int_{0}^{T} S_{s} d s-K\right)_{+} \right\rvert\, \sigma\left(\left(v_{t}\right)_{0 \leq t \leq T}\right)\right)\right)
$$

- solving the quantization $O D E$'s for $\left(v_{t}\right)$ (by a Runge-Kuta scheme)

$$
d y_{i}(t)=\left(k\left(a-y_{i}(t)-\frac{\vartheta^{2}}{4 k}\right) d t+\vartheta \sqrt{y_{i}(t)} d \alpha_{i}^{N}(t), i=1, \ldots, N\right.
$$

Set the (non-Voronoi but rate optimal) N-quantization of $\left(v_{t}, S_{t}\right)$ by

$$
\widetilde{v}_{t}^{n, N}=\sum_{\underline{i}} y_{\underline{i}}^{n, N}(t) \mathbf{1}_{C_{\underline{i}\left(\chi^{N}\right)}}\left(W^{2}\right) .
$$

and

$$
\widetilde{S}_{t}^{n, N}=\sum_{1 \leq i, j \leq N} s_{i, j}^{n, N}(t) \mathbf{1}_{\alpha_{i}^{N}}\left(\widetilde{W}^{1}\right) \mathbf{1}_{\alpha_{j}^{N}}\left(W^{2}\right)
$$

with

$$
\begin{aligned}
s_{i, j}^{n, N}(t)= & s_{0} \exp \left(t\left(\left(r-\frac{\rho a k}{\vartheta}\right)+\bar{y}_{j}^{n, N}(t)\left(\frac{\rho k}{\vartheta}-\frac{1}{2}\right)\right)+\frac{\rho}{\vartheta}\left(y_{j}^{n, N}(t)-v_{0}\right)\right) \\
& \times \exp \left(\sqrt{1-\rho^{2}} \int_{0}^{t} \sqrt{y_{j}^{n, N}} d \alpha_{i}^{N}\right) .
\end{aligned}
$$

- Computation of crude quantized premium for N and M.
- Space Romberg log-extrapolation RCrAsCall ${ }^{\text {Hest }}\left(s_{0}, K\right)$.
- K-linear interpolation IRAsCall ${ }^{\text {Hest }}\left(s_{0}, K\right)$ based on the forward moneyness and the Call-Put parity formula

$$
\text { AsianCall }^{\text {Hest }}\left(s_{0}, K\right)-\operatorname{AsianPut}\left(s_{0}, K\right)=s_{0} \frac{1-e^{-r T}}{r T}-K e^{-r T}
$$

Fig. 4: Optimized Quantizer of the Heston volatility process $N=400$
\triangleright Parameters of the Heston model :

$$
s_{0}=100, k=2, a=0.01, \rho=0.5, v_{0}=10 \%, \vartheta=20 \%
$$

\triangleright Parameters of the option portfolio :

$$
T=1, K=99, \cdots, 111 \quad(13 \text { strikes })
$$

\triangleright Reference price : computed by a 10^{8} trial Monte Carlo simulation (including a time Romberg extrapolation with $2 n=256, n=128$).
\triangleright Parameters of the quantization quadrature formulae :

$$
\Delta t=1 / 32, \quad(N, M)=(400,100),(1000,100) \text { or }(3200,400)
$$

Fig. 5: K-Interpolated-log-Romberg extrapolated- FQ price :
The error with $(N, M)=(400,100),(N, M)=(1000,100)$,

$$
(N, M)=(3200,400)
$$

NX=3200, NY=400. INTERPOLATION. Dt = 1/32, 1/64, 1/128

Fig. 6: K-Interpolated-log-Romberg extrapolated- FQ price : Convergence as $\Delta t \rightarrow 0$ with $(N, M)=(3200,400)$

Conclusion

\triangleright Functional Quantization can compute a whole vector (more than 10) option premia for the Asian option in the Heston model

Within 1 cent accuracy in less than 1 second

(implementation in C on 2.5 GHz processor).
\triangleright Functional Quantization is not dedicated to the Heston model. Similar tests carried out in the B-S model, in progress with the SABR model.
\triangleright Perspective and projects : implementation of theoretical results for Lévy processes, other path-dependent options (barrier options, etc).

A possible alternative : The product quantization (G.P.-J. Printems, MCMA, 2006)

A (stationary) product quantization of the Brownian motion is defined by

$$
\widehat{W}^{N}:=\sum_{n \geq 1} \lambda_{n} \widehat{\xi}_{n}^{N_{n}} e_{n}^{W}, \quad N_{1} \times \cdots \times N_{m} \leq N
$$

where $\widehat{\xi}_{n}^{N_{n}}$ are 1-dimensional (i.i.d.) optimal N_{n}-quantizations.

Less efficient (twice...) but all no storing constraint :
all the "ingredients" (scalar optimal quantizations, optimal size allocations, etc) can be computed from a ...

$$
100 \times 2 \text { matrix !! }
$$

More about quantization on the new website

http ://quantification.finance-mathematique.com/

\triangleright Bibliography
\triangleright Download optimal/optimized Vector Quantizers of the normal distribution $\mathcal{N}\left(0 ; I_{d}\right), 1 \leq d \leq 10$.
\triangleright Download architectures of optimal product quantizers of the Brownian motion.
\triangleright Soon available : optimized quantizers of the Brownian motion.

